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We present a proof of the exponential convergence to equilibrium of single-spin- 
flip stochastic dynamics for the two-dimensional Ising ferromagnet in the 
low-temperature case with not too small external magnetic field h uniformly in 
the volume and in the boundary conditions. 
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1. INTRODUCTION AND MAIN RESULT 

In this paper we prove a result on the convergence to equilibrium for some 
short-range single-spin-flip stochastic Ising models. In particular, we 
analyze the so-called "heat bath" algorithm and the "Metropolis" 
algorithm. These dynamics, described in detail in Section 2, satisfy the 
detailed balance condition with respect to the Gibbs measure of the Ising 
model and they are among the most popular dynamics used in Monte 
Carlo simulations of Ising models. A central question, both of practical and 
of theoretical interest, is the rate of approach to equilibrium. This question 
has been investigated in great detail by Holley in a series of remarkable 
papers (~'2~ for general stochastic Ising models (see also Holley and 
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Strook (3) and Aizenman and Holley(4)). In particular, Holley (1~ proved that 
either the convergence is exponentially fast in time or else it is not faster, 
in a suitable sense, than t d, where d is the dimension of the underlying 
lattice. Moreover, Holley reduced the condition under which exponential 
convergence takes place to the validity of certain "mixing" conditions for 
the Gibbs measure in a finite region A similar to the famous Dobrushin- 
Shlosman uniqueness condition. (1~ The region A on which the condition 
has to be valid is free and it must be conveniently chosen depending on the 
temperature and on the external magnetic field h. This approach allows one 
to prove exponential convergence for high temperature or for high 
magnetic field h. In both cases the region A may be chosen as consisting 
of very few sites. However, the interesting case of low temperature and 
small magnetic field remained open. The reason is that in Holley's 
approach the region A has to be chosen very large as h tends to zero, and 
already with regions consisting of few sites his conditions become intrac- 
table in practice. The physical reason is that, for the above values of the 
parameters (~, h), the Ising model exhibits a kind of asymmetric double-well 
structure with the deepest well representing the phase parallel to the 
magnetic field and the second well representing the metastable phase 
opposite to the field. Thus, a rigorous analysis of the convergence to equi- 
librium necessarily requires a detailed study of the transition (tunneling) 
from the metastable to the stable phase. This study has been done in great 
detail for the two-dimensional Ising model in finite volume in the zero- 
temperature limit by Jord~to Neves and Schonman. 15) They proved in 
particular that the transition occurs essentially through the creation of a 
critical droplet of the right phase inside the metastable phase, and they 
derived rigorous upper and lower bounds on the typical time needed for 
this to happen. 

In the present paper we combine some of the results of Holley together 
with the results of Jordfio Neves and Schonman to provide a proof, entirely 
based upon an analysis of the dynamics, of the exponential convergence to 
equilibrium for the two-dimensional Ising model at low temperature and 
not too small magnetic field. The new ideas which enter in our proof are 
taken from an analogous work (6'7) (see also refs. 8, 9) done by the authors 
for the Swendsen-Wang dynamics in the same region of the parameters. 
The restriction here to the two-dimensional case is due to the fact that the 
results of ref. 5 are proved only in this case. 

Let us state more precisely our main result. We consider the 2-dimen- 
sional nearest-neighbor Ising system in a cubic box 

A= { x ~ Z  2, x=(x~,x2):  Ixi[ <.NL, i=1 ,2}  
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of side 2L + 1 whose Hamiltonian is written as 

1 ~ or(x) cr(y) _h ~ or(x) and 
Hb(a) = --2x, y~A,,x--yl=~ --2x~A 

1 
- -  Z o(x) b ( z )  

2 x ~ A ,  z q ~ A ,  [ x - z l  = 1 

where ~r~ { -  1, 1 }A, and b represents the boundary conditions. 
Let 

P A = exp( - ~ HbA)/ Z A 

be the Gibbs measure in A with boundary conditions b, inverse 
temperature/3, and external magnetic field h (ZA is the partition function). 
Let E~(f(at))  denote the expectation value of the observable f over the 
process a, starting at a and evolving either with the heat bath or with 
Metropolis algorithm. The following theorem holds. 

T h e o r e m .  Given h>0,  one can find /30=/3o(h) and to(/3, h) such 
that, for any fl >/30, one can find m > 0 independent of the volume A and 
of the b.c. b such that 

sup [ p A ( f ) - - E ~ ( f ( a , ) ) l ~ C / e x p ( - - m t ) ,  Vt>~to(fl, h) 
a~{ - -1 ,1}  A 

where f is an arbitrary local observable and Cf a numerical constant 
depending only on f 

We would like to emphasize that we prove the above result only under 
the hypotheses/3h large. This is so in order to be able to use the results of 
ref. 5. The above result is, however, expected to be true in the more general 
case when/3 is fixed large enough and h is different from zero. However, the 
mechanism leading to the loss of memory and therefore to exponential 
convergence to equilibrium in the case/3 large but/3h small should be more 
complicated than the one described here. This is also suggested by the 
observation made by Huse and Fisher (~2) for the case h = 0 and + boundary 
conditions. They remarked that in this case the convergence to the + 
phase, starting, e.g., from all plus spins, cannot be exponential in two 
dimension because of the presence in the + phase of rare large droplets of 
minus spins. Such droplets, in the absence of an external positive magnetic 
field, disappear in a time proportional to their area, while their probability 
is only exponentially small in the length of their boundary. This led to the 
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conclusion that the convergence to equilibrium should be a stretched 
exponential e x p ( - x / t )  (see also Sokal and Thomas(13)). 

Let us now explain the physical mechanism behind the proof of the 
main theorem in the presence of an external magnetic field h such that flh 
is large. If we start with two opposite configurations, one with all spins 
minus and the other with all spins plus, and we let them evolve together 
(see below), due to the presence of the external field, the negative 
configuration will become mostly plus in a time independent of the volume 
(nucleation time) (see Theorem 3), while the positive configuration will 
continue to be mostly positive. Thus, after the nucleation time the differences 
between the two configurations will consist of small islands well isolated 
one from the other. These islands, under the action of the common sea of 
plus spins and of the field h, will disappear in a rather short time of the 
order of the log(L), where L is the size of the box under consideration. 
Thus, the mechanism is essentially local. 

The paper is organized as follows: in Section 2 we illustrate the 
strategy of the proof and we prove the main steps modulo some technical 
results, whose proof is given in Section 3. 

2. P R O O F  OF T H E  T H E O R E M  

As already mentioned, we restrict ourselves to a stochastic Ising model 
in 2 dimensions (see, e.g., ref. 1) with flip rate C(x, tl), t / e { - 1 , 1 }  A, 
A = I - L ,  L ] 2 n Z  2, given by 

C(x, t/)= {1 + exp[fl AxH(r/)] } -1 

for the heat bath (HB) and 

1 
C(x, r/)= exp{- f l  AxH(tt)} 

if AxH(tl)<~O 
otherwise (2.1) 

for the Metropolis (M) algorithm, where H(tl) is the Ising Hamiltonian: 

t 1 H(.)=-2 Z '7(x)'l(Y)--ih ,7(x), 
( x y )  x ~ A  

eA 

h>O (2.2) 

and 

A~H(q) = H(tl x) - H(tl) (2.3) 

with tlX(y)= q(y) if x r y, qX(x)= -tt(x). Here we are considering for 
simplicity open boundary conditions; periodic, plus, or minus boundary 
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conditions may be considered as well. For  each initial configuration q each 
of the above rates defines a continuous-time Markov process denoted by 
{~,},>o such that 

qo(X) = ~l(x), Vx e A 

P ( r t ,  +~ = o-I ,/ t  = ,~ , )  = ( o ( e = )  
if ~ = ( a l ) X f o r s o m e x e A  

otherwise 

a s  5 - * 0 .  

An explicit construction of the process goes as follows 

(a) With rate [A[ one chooses a random site x e A .  We will then say 
that "x is visited." 

(b) Given x, one extracts a number 

Ce(0, 1) 

with uniform distribution. 

(c) Given a configuration q, one sets 

(2.4) 

t/~ = ~/x iff ~x < C(x, ~/) 

tt~ = q otherwise 

where ~ is the (random) time at which x was visited. 

The property which is crucial for our results is that each of the above 
flip rates defines an "attractive" stochastic Ising model; this means that if 
f is a monotone function in the sense that f (~)~>f(t / )  for any pair ~, 
t i e { - 1 , 1 )  A with ~r(x)>>.tl(x), Vx, then E, f ( t b )  is also monotone as 
function of t/. 

For  the HB algorithm there is actually an alternative explicit construc- 
tion of the process which preserves the partial ordering between configura- 
tions a <~ t I path by path. This is realized by replacing (c) with: 

(c') Given a configuration q, one sets 

( { I ]})1 q ~ ( x ) = + l  if ~x< l + e x p  - f l  h +  ~ t/(y) 
]y x] = 1 

t/~(x) = - 1 otherwise 

.~(y)=.(y) Vy#x 

It is clear that the above explicit construction of the process based on 
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(a), (b), (c') above provides a random flow ~b~ on { -  1, 1 }~ and by explicit 
computation one checks that 

if a~<I/, i.e., ~r(x)~<~/(x), VxeA 

then q~t (o-) ~ ~bt (r/) (2.5) 

Thus, in this case if ~b,(_+ 1) denote the evolution at time t of the configura- 
tions identically equal to _+ 1, we get 

r 1)~<~,(a) ~<~,(1), Va~ { - 1 ,  1} A 

This property clearly implies attractivity. Using this property, some of the 
proofs become more transparent; therefore we decided to provide all the 
details only for the HB algorithm constructed with (a), (b), (c'). 

Moreover, in order to make the exposition easier, we assume h < 1. At 
the end of Section 3 we will sketch the simple modifications required by the 
M algorithm and the extension of the results to general h > 0. We now turn 
to the proof of our main theorem. It is one of the important results of 
Holley (~) that the theorem follows if we can prove: 

T h e or e m 2. For any sufficiently large fl there exists t~ > Co with the 
property that 

tim t~P(~b,~(1)(0) # ~b,~( - 1)(0)) = O 

The constant Co is a number independent of fl and h (see Theorem of 
ref. 1). 

A crucial ingredient in the proof of Theorem 2 is the following result, 
which is a rather direct consequence of the work by Jord~o Neves and 
Schonmann. (5) For simplicity we assume, as in ref. 5, 2/h(~ N. Given an 
even number l, we set Qt_  {square centered at (1/2, 1/2) with side l} 
O 7/2, l >  [2/h] + 1 and 

v(a) = inf{ t >/0; ~bt (a)(x) = + 1, Vx ~ Qt} 

Theorem 3. 

where 

V6>0, 

lim P ( ~ ( - 1 ) < e x p [ ~ ( F ( h ) + 6 ) ] ) =  ! 

F(h) = 412/h] - (I-2/h] 2 + [2/h] + 1 )h + 4 
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Remark 1. If we let T,.~-exp{fl(F(h)+n~)}, we get immediately 
from the strong Markov property that 

P(z( -- 1 ) > T,,a) ~< P(z( - 1) > TI,~) [el" 1)6~] (2.6) 

We have used the obvious fact that 

~ ( -  1)~>z(a), Vo-~ { - 1 ,  1} A 

We postpone the proof of Theorem 3 to Section 3 and we now prove 
Theorem 2. 

Proof of Theorem 2. Let t~ = T3,a, 6 > 0, and let ~2o be the event 

f 2 o = { ~ ( - 1 ) < e  6~t~} (2.7) 

It follows from Theorem 3, Remark 1, and (2.5) that if l >  [-2/h] + 1 and 
fl>>l, 

2 c tBP(f2o) <~ exp[ -k ( f i )  exp(6fl)] (2.8) 

with k(fl)T +oe as f l ~  +oe. 
The idea is now very simple. We write 

P(~b,~ ( - 1 )(0) # ~b,~( + 1 )(0)) ~< P(Y2;) + P(~b,~ ( - 1 )(0) # ~b,~( + 1 )(0); s 

(2.9) 

The first term, using (2.8), satisfies the condition of Theorem 2. The 
second term is given by 

fotae-~aEz(z(-1)~dto)Z(O,a(-1)(O)r (2.10) 

Notice that ~b~( 1)(- 1)(x) = ~b~(_l~(+ 1)(x), VxE Ql, and both are + 1. 
We have then to show that for arbitrary configurations a and t/ such 

that 
~r(x) = ~(x) = +1, VxeQ t 

the possible differences between a and q outside Qt are not able to reach 
the origin within the time t r  with a probability greater than 1 -  p(fl), 
with 

t~p(fl)--*O as f l ~  +oe 

In other words, the large cluster Qt of plus spins at time to is able to 
completely screen the origin from the rest of the configuration outside Q~ 
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for a time longer than t~ - to. We are using here the rather trivial observation 
that, if, at time t, a,(x)r and if t-was the time of the last updating 
of the site x, then necessarily there exists a site y, [y -x]  = 1 with 
ai_~(y) r ~/~-_~(y), V sufficiently small ~. 

This simply means that the differences between two configurations can 
propagate only between nearest neighbor sites and that they cannot be 
created from nothing. 

In order to analyze more precisely the above-mentioned "screening" 
effect, we follow ref. 6. Let 

j l  2 

Ij= [J Ti 
( j -  1)12+ 1 

where T~= [ ( i -  1)/32, ifl2], and let vi(x) be the number of times the site x 
is visited during T~. 

Definition 1. Ij is ~ if: 

(i) Vx~Q ~, Vi~E(j-1)12,  j l 2 ] ~ N ,  

1 <<. Vi(X ) ~ 2fl 2 (2.11) 

(ii) VXe Qt, Vie [ ( j -  1)/2, jl 2] ~ N ,  1 - e x p ( - f l h )  > ~ >  exp(-/3h), 
where ~k x is the random number in (0, 1) that one extracts in order to 
update x the kth time in the time interval Ti. 

Remark 2. Point (ii) of (2.11) ensures that, uniformly in the initial 
configuration a, during a "good" time interval Ij we never see an updating 
in Qt which increases the energy. 

Definition 2: 

(a) Ij is "bad" if it is not "good." 
[I J0 + n "bad" (b) S, - .~J=J0 lj is called a (maximal) sequence if Ij is "bad" 

Vje(jo, Jo+n) and Ij0_x, lj0+,+l are "good." 

(c) A "bad" sequence Sn is said to be "acceptable" iff # ( t~  Sn; there 
is x ~ Q  ~ such that x is visited at time t with ~<exp( - /3h)  or 

> 1 - exp(-/3h)} < 20/h 2. 

The main reason for the introduction of the above definitions is 
explained in the next two propositions, which will be proven in Section 3. 

Proposition 1. Let cr be such that there exists a subset A c QI with 
a (x )=  +1, Vx~A, and with the property that: 

(1) the smallest rectangle enclosing A coincides with QI, 
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(2) there exists no x ~ A such that Zry ~1 = 1 a(y)  < O. 

Then if I~ is "good," we have 

a#~2(x) = 1 V x ~ Q  t 

In other words, a "good" interval of time is able to reconstruct the full 
square Qt of plus spins provided that one starts with a cluster of plus spins 
which is only a "small erosion" of Q( 

For brevity we will refer to conditions 1 and 2 of the above proposi- 
tion as property ~.  

Proposition 2. Let a be such that a ( x ) =  +1, V x ~ Q  l, with 
l > 2 / h  3, and let S , = I 1 u  . . .  ~ I n  be "acceptable." Then, if h is small 
enough, with probability one for any t e S n  there exists a subset A + ~ QI 
with the property ~ such that a t ( x ) =  +1, V x ~ A  +, IA + ] > 1 2 - I / 2 .  

We can say that an "acceptable" sequence S, can only produce "small 
erosion" (in the sense explained above) of an initial cluster Qt of plus spins 
provided l is large enough. Thus, if we have a time interval [0, T] = 
UU=l !i such that any bad sequence S, in [0, T] is "acceptable" and if 
cr~ { - 1 ,  1} A is such that a(x)-= +1, V x e Q  t, then in [0, T] the cluster of 
plus spins inside Qt undergoes only small fluctuations around its starting 
shape Q( 

More important, if a and t/ are such that a ( x ) = q ( x ) =  +1, VxE Qt, 
then, since ]A~+[ > l 2 -1 /2 ,  we will never see a difference at x = O  within 
time T, i.e., 

Thus 

a,(0) = t/t(0), Vt6 [0, T] (2.12) 

sup sup 
o , r / : q ( x )  = o-(x)  = 1 , V x  ~ Ql ~o < e-~fltfl 

can be bounded by 

P(~,~ ,0(G)(0) # O,~-,0(~)(0)) 

P(3 a "nonacceptable" sequence S,, in [to, t~] ) 

~< P(3 a "nonacceptable" sequence Sn in [0, t~] ) 

<~ 77-Yi ~ P(Sn = 11 u . . .  u I n is bad and "nonacceptable") (2.! 3) 
l f l  n = l  

The generic term of the sum in the rhs of (2.13) is estimated in the 
final proposition. 
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Proposition 3. If fl is large enough, 

30 
P(S, is a bad "nonacceptable" sequence) ~< e-flhn/2 if n > 

30 
P(S n is a bad "nonacceptable" sequence) ~< e-!9fl/h if n < h-- ~ 

Using the above proposition, we get that the rhs of (2.13) is bounded by 

t;j2e -15~/~' tt~ 30 19~/h ,~, 
12fl2 + l ~ - ~ e  =p~p~ (2.14) 

It follows from the definition of t,  that 

p(fl)tzp--*O as fl--+ +co (2.15) 

and Theorem 2 is proved. | 

3. S O M E  T E C H N I C A L  PROOFS 

This section contains the proofs of Theorem 3 and Propositions 1-3. 

Proof of Theorem 3. Given QI, l >  [2/hi + 1, let 0~ be the external 
boundary of Q~, i.e., 

0,= {x(dQl, 3yEQ', [x -  yl = 1} (3.1) 

We want to construct the dynamics on { - I ,  I }4 with extra minus 
boundary conditions on ~?. 

This is done by adding to the step (c') of the explicit construction of 
our process (see Section 2) the condition 

q~(y) = -1 ,  Vye0,  (3.2) 

The new random flow on { - 1 ,  1 }A is denoted by %~(-). It is easy to 
check that 

~b~(rT)(x)~<~b,(r~)(x), VxEA, Vae { - 1 ,  1} A (3.3) 

Therefore, if we let 

r~ = inf {t ~> 0; ~b~(a)(x) = + 1, Vx ~ Q'} (3.4) 

then we have r~162 Vae { - 1 ,  1}. Since the regions Q~ and 
A\(QZu ~) are now decoupled for the dynamics ~b~(.), we have reduced the 
original problem to an analogous problem on a finite volume Q( 
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Shonmann and Jordfio Neves (5) proved the result of Theorem 3 for the 
Metropolis dynamics on Q~ with periodic boundary conditions. It is easy 
to extend their arguments to cover the case of heat bath dynamics on Q~ 
with minus boundary conditions. | 

Proof of Proposition I. It is quite clear that, since I~ is good, i.e., 
there is no updating in QZ during I~ which increases the energy, 
a~(x)= +1, VxeA, VteI~. 

Let now y be a nearest neighbor of A such that 3x, x~eA with 
I x -  Yl = ]x~ - Yl = 1. Such a y exists unless A coincides with Q( 

Let ry be the first time in T~ for which the site y is visited, ry exists 
since I1 is good. Then, if a t(y)  was not already + 1 for t < ry, at time ry 
it flips to + 1 in order to lower the energy. 

We then set 

A l = A w y  

Clearly, A~ enjoys property .~ and we can repeat the above argument for 
A~. We iterate the above procedure until we have reconstructed all Qt at 
some t-e I~. Once the droplet Qt is formed with all spins equal to + 1, then 
it is stable, since I~ is good and the proposition follows. | 

Proof of Proposition 2. The proof consists essentially in bounding 
the total loss of plus spins inside QI at the end of the "bad" sequence Sn. 
We first define inductively the random time 

z~, k = 0, 1,..., k0, k 0 < 20/h 2 

by 

% = 0  

rk = inf{t>~z~_ ~, 3x~Qto such that x is visited at time t and ~x<exp(- /?h)  } 

(3.5) 

By construction, between (zk_~, zk) there is no updating inside QZ 
which increases the energy H(a,). 

Let us now partition the square QI into (//2) z squares 0j  of side 2. By 
construction, if  at time rk + fi all the spins inside 0j  are plus one for all 6 
sufficiently small, then each one of them will not flip up to time zk+ ~. 
Moreover, at time rk there exists at most one square Oj such that 

~7~k ~(x)= +1 VxEOj (3.6) 

a ~ + a ( y ) =  --1 for some y~Oj (3.7) 

if fi is small enough. 
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If we denote by J the set of all indices j such that the 2 x 2 square 0/ 
has never been visited for any rk with 

rk ~ t (3.8) 

we define 

A~ = U 0i (3.9) 
. j~ J 

Evidently A + enjoys the property ~ and 

4-20 
IA,[ >1 1 z - T -  (3.10) 

4 .20 l 
h--5- < ~ (3.11) 

if h is small enough and l > 1/h 3. 
Thus, the smallest rectangle 

proposition follows. | 
in Ql containing A + is Qt and the 

Proof  of  Proposition 3. We first compute the probability of a "bad" 
interval I1. We have 

P(I1 is "bad") ~< e flh/2 (3.12) 

if/3h is large enough. 
In fact 

P(I1 is "bad") 

14 sup P(v l (x  ) r (1, 2fl2)) 
x ~ Q  ! 

-~- l 4 sup P(vl (x)  e (1, 2/32); 
x e Q  l 

3k <~ vl(x),  ~k ~x < exp(-/3h) or ~ > 1 - exp(-/3h)) (3.13) 

The first term, after an explicit computation, is bounded by exp(-/32/2) 
for/3 sufficiently large, while the second one can be estimated by 

e -/~h/2 
(2l)2122/32e ~h < 

2 

and (3.12) follows. 
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Thus we have either the bound 

P(S~ is a bad "nonacceptable" sequence) ~< e ~h,/2 (3.14) 

o r :  

P(Sn is a bad "nonacceptable" sequence) 

~< P ( # { t e Sn; 3x ~ Q~ visited at time t 

with ~ < exp ( - f l h )  or ~ > 1 - exp( - f lh )}  > ~-7 

~< e 19~/h for fl large enough if n < 30/h 2 (3.15) 

The last bound follows from a trivial estimate on the independent 
process of choosing a site x with rate [AI. 

The proposition is proved. | 

We now sketch the modifications of the above argument necessary to 
cover the M case, since for the random flow ~, given by (a), (b), (c) it is 
not true anymore that 

We start with Theorem 3 and we proceed as in the HB dynamics. Minus 
boundary conditions on 3 [see (3.1)] can be introduced as in (3.2). It turns 
out that the corresponding flip rates C~ q) are such that 

C~ tl)>~C(x,a) if ~/~< a and a(x) = ~/(x) = +1 
(3.16) 

C~ q) <-.. C(x, a) if ~/-..< a and a(x) = q(x) = - 1  

We can therefore apply Theorem 1.5, Chapter 3 of ref. 11 to get 

sup P(~(a) >~ e-~ t~) <<, sup P(~~ > e - ~  tfl) (3.17) 

where r(a),  t~ t~ are defined as in Section 2 and in (3.4). 
The rhs of (3.17), by the Markov property, can be bounded by 

sup P(~~ > T1,/~) [e6t~] (3.18) 
o" 

where TI,~ is as in Theorem 3. 
Thus, as in the HB dynamics, thanks to the results of ref. 5, with very 

large probability z ( - 1 )  and z ( + l )  are both less than e-6~tt~. Notice, 
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however, that since ~ ( - )  does not preserve ordering, it is no longer true in 
general that 

~r( 1) ( - '} - I ) (x)= +1 ,  V x E Q  l 

As in the HB case, one then defines the good intervals and the acceptable 
sequences using only the basic underlying process which chooses the random 
site x and the random numbers ix. 

Thus, Propositions 1-3 remain unchanged. If now the time interval 
[0, t~] contains only acceptable sequences, by Propositions 1 and 2, at 
time t, the end of the first good interval Ij after z ( - 1 )  v z(+  1), both 
~ ( - 1 )  and ~ ( +  1), will be identically equal to + 1 in Q( After this step 
the proof is unchanged. 

We finally describe the extension of our results to arbitrary h > 0. 
Let h 2 > 0  and let 0<h~ <h2 be so small that the previous results 

apply for h = h  1. It is easy to check that if we denote by C~(x, it), C2(x, ~I) 
the flip rates for h = h i ,  h = h2, respectively, then C1, C2 satisfy 

Cl(X , ?]) ~ C2(x , 17) 

Cl(x,  ~) <<. C2(x, 17) 

if t/~<17, r/(x)=17(x)=l 

if t/-..< r/(x) = 17(x) = - 1  
(3.19) 

Thus, again using Theorem 1.5, Chapter 3, of ref. 11, 

sup P(T2(17) ~> t) ~< sup P('c1(17 ) ~> t) 
G f f  

where zl(a), r2(17) are r(a) with h = h i ,  h2, respectively. 
It follows that, if we define for h = h2 the good time intervals, the 

acceptable sequences, and the time t~ to be exactly those define for h = h i ,  
the previous proof applies to h = h2 as well. Of course, in this way the time 
t~ will not coincide in general with the "true time" of h = h2. 
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